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1. INTRODUCTION

Themxofmﬁwmbwsmmofinauudpmdncdvﬁy
ind relishilicy. Experience has sbownthnmﬂ:ingcvmmc
Wdighxatdxmg:mcﬁwnd'pbe:cf;ofw#tmxmkhc“ﬁy.
,gunprediaxblem[Solomou.lm. For this reason, the Flight
ics Division (FDD) of Godderd Space Flight Centet
-(GSFC)ism:ﬁngcﬁ'cﬂ oa developing "vabating™ reuszble
with Ads, where verbatim mesns that na

mmwmducmmwm
dymiade(GRODnShcemdmc.dxd&dmd
mnhnmhmbemumwuxedwmm
tqopcmmmde&'mhmndcmmmcbmbmd&un

Thkp-p&fomoathcmcusedhm:mjcasuhﬂc
hd_memknpaamvabcdmw&wdemhanDD

are usod 1 achicve reuse in the lerge. Finally, this peper presents
mppudnzm&wmm:bﬂhym!&

mmbmmmgnnn&ﬁedv«ﬁmducmﬂ(kjed-
Orientad Development (GQQOD) medndalogy (Scidewitz, 1986;
Surk, 19:7:5&:&1988]»4;«@&35&% Three
concepts that play 2 fole in cnhence verbatim reuses
concepks suppott the reuse of muffcﬁde larger companents
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wichin successively nsrrower domains. The next two sections
deeqibebowmmm:ppﬁodmsimhm;pmjedshme
FDD. Ahmwdonmppom‘mindxnmll'mdin}uim

. mdpmb&m-cpeciﬁcudkaum'mchmlnzc.’ The

mgﬁakuwmtmh&ﬂdm@mmpom
lfkuia.uhdoucwixhinwumoaofcm@oﬂmnbycxﬁy
Booch [Booch, 1967] and EVE's Generic, Reusable Ada
Componcnts for Enginecring (GRACE) (Berard, 1989]. The
UARSTELS and GENSIM projécts are cited to describe how rease
mnlzzemkismmpﬁshedmdbdmmmmthepocmﬁdin
cnam'mgsmdloﬂhcubﬂitymsclvemeompkxpmblcns.

2. REUSE IN THE SMALL: -
USE OF ADA GENERICS

Designi
muﬁwmwummm
Mdmwatmﬂyc{mpwmuwkfy
memabm:dhnwithhdummofdiﬁam:pmbhm&fa
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3. Nested generic definiGons
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exemples W demonstute their epplication.  Lmplicaticas for .

Whmﬁkwmmh&mbﬁmo&gmukl
libeery unit Thisappmwhiuppcdh(farpmcdalmm The
paaﬂnﬂyhodwopcmvidedbymxuymmhwmmw
be necessary for Ada compilers that do a0l implement code



sharing! (Ganepethi. 1989]. Most implemenutioas curreatly do
not support code shering. Instead, esch instntistion creates &
complete object code copy of the generic template. The system-
widcscopc;xovidedbylibnrymitso&cnmnkaodyonecopy
(instance) necessary.

Todcsm'betuﬁmxnedndofmruymkhsimdm:sm
mndtegmkp;cktgeAdepuadson:sdofgubp:ogrmP.
pmvidcdbydwgawricpuhge& Instentiating B &5 a libeary wnit
mmnwpyofmhgmpuhgccaﬂcdmj. The
genetic package A may then -be instantiated by using the
s-ubpm;nmspmvidcdbylnﬂmccjumdpcw& This
:nowstbcgmcricptckxg«AmdBwbcdaignedmd

Fgure 1. )
As;xcvmstymmamd.msmnmx geocdduli!:nryunin
mmmdeAdnmuw
(nmodh:wﬂhdme)ﬁymyoaugﬂaﬂoumkhuym

However, if B were sn sbstract state ine? end the design
mquiredd!nﬁzboddbevkiﬂeodyh&iﬁsmmd
visibility of B is undesirable, It woald be fzr better S use the
Wbd«wdmd«ﬁpdﬁdﬂn

f«mdmbprwwnﬁngmm'ﬁdx
M(maﬂnzinmiswedmksanlyfmmdpcwk?l).
the mstance of A czn be wrigen a3 shown in Figare 2.

%o shere the same object code. The result is nsuslly & smaller
mmwmmmwt«mm

2 The nottion for the design diegrams uses roanded-comer
mmdauwpdzgs.mﬁdmwnm
dcp:ndmda.bmhnmunmwmmmdm
p«:b(e:ymbolsumptwqmicmh.

3 Aptcbgcdmismlbsmmmnchimh:p-chsedm
uuhuinsminformuioﬂinuupuhgc body (Booch, 19831

generic .
with'procedure P {s <}
package A ls

ead A3
generic

pn:knge Blis
procedure P1;
env? B;

with AJnstance_B:
use Instance_B:
package Insunce A s new A

Figure 2

mswchniquewbwenwwmauusdmplcﬁmcdmm
used as formal prrsmeters. This use of Ads simudates the search of

hsmﬁmthcp:chgeo{ﬂigh:dyumia :bstrtc&dantypcs4
shown inpert 1. Care should be used with this technique, since
meuzdmcdodmethmdmplymkcobjeusmdopmm
directly visible. There are isibili rules of the

visibdity
lenguage that will affect what defmles will be used [Mendal, 1988].-

geaeric N
type REAL ki digits <5
type RADIANS bs digits ©¢ .
WYECTORBamy(M‘EGEngeo)dREAL:
type MATRIX s array ( INTEGER range <,
INTEGER raage <) of REAL;
with functioa sin ( Angle : éa RADIANS)
return REAL s ©1
with function cos ( Angle : in RADIANS)
retura REAL s ©;
with function Floor ( Iiem: {a REAL) *

4 Ap«#l.gelhuismmduuypcuporsobjca&rypcs.md
j hndocno(uuhuhmeinfmionindubody
{Booch, 19831
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with Single_Math_Functons,
Single_Linemr_Algebxs: *

use Single_Math_Functons,
Single_Lincer_Algebxx:

with Math_Types,
Generic_Attisde_Typess

package Single_Attitude_Types s
new Generic_Attitude

Figore 3 2 of 2).

Aswoudmethoddmusaﬁbnryu:ﬂhxsmkbimxmﬁmB
ullibruyu:ﬁkwhichklhcnwith-edinmthcbodyofgmiCA
(Figare 4). S‘xncedxepmcedm‘ddono(medwbepcscdsml
parameters, this opd allows A o have & shorter formal

list. However, method ofien requires the use of common -

rypafoxAmdB.Fcrcxxmpk.fcuﬁi;h&dymmhxppuadou.
thcgd::dcpnchgeAwouldhxvembecoupbdwmemc
‘ﬂom'ng-poim:ypaudzgmicorhmmoeofpwbge& As
bn;umismofcouplingisrchﬁvdysimple.izanbe
mmged('mdmximnhmwebyhﬂingnsin;lepochgc
coataining the besic flosting-point fypes)-

The disadvantage of this

approach is the use of & conunoa types
puch;euimplicidycwple.\md&m&faum&wm
e S lex of ins o0 hiding end data et .
Th:_folhviusecﬁmdaaibdhvme:phkmm

wphdphbyudnggmtimmnm

Nested lnstantiations

Comhuingtheumceumplc.thcgmicpmsemee
Mundindnbodyo(;eacﬁcA(ﬁmS)usin;dngmic
{ormals of A. Thsoptmudcdﬁx:bmmdm{armam

hiding becausc it can be extended to & series of nested
instantiations. Objects, types, mnd operations from B may be used
as building blocks ind specialized o raise the level of
abstraction (Stark, 1987]. This is sometimes referted W as re-
exporied. Importing the package B in this manner allows objects,
types.mdop«:donsmbehiddminlhebodyo(d-.cgm
packege A but still used o instantiate B, :

The disadventage of using nesting instentistions is the advantxge of
usmglﬁxuymmmnm That is, if the Ads compiler
bdn_(ucddoanot_mppmcodcshch;mdminmo:c{:

pumlx;mkkmmhmaﬂbaﬁmus&n;vm
result in mulsiple object code copies. Far exxmple, the exeastsble
size of GRODY is less then 2 megabytes (Mb). This stmuletor
does not have multiple copies of nested instantiations.
Um.mmmwmm«mofm
hsa:ﬁnﬁmvﬁdmhedhumﬂedxd6m

Oumemfmdniqimcfm&n&namumat
using library umit instendations exclusively. The scmual

adywbm:fwwpi«mmy.Oquummmu
mbaopridkuhnplmtegmaicpuh:cun
mdantypenmalhmanmmm This
chh-uybepom‘blevbcumdépkhamoaohhe
sbstraction use the seme types and subprograms s scoaal
butm(ﬁﬂ'ae&objecu(ﬁdx:ﬂawobjmwhe
subprograms must be passed &
wm;mwmmnumm
bcmﬁtofhawedﬂqibﬂky.dmcobjwsmbedadndm
¢campﬂ¢ianﬁme«qumd(dyumiaﬂy)um&u.
Wbammwdsiaamfamldﬁ:mofmm

mmummwluhnkanuhcwnpﬂam
suppocts code thering.



Neastaed Genaric Definitions

Nawdge:wdcdcﬁxﬁdonsisdwddrddui@:pptuchdmibed
here. This technique is eppealing when the problem cails for &
high degree of coupling between gencrics.

Changing the peevious examples, if instentistions of generic
pmhgeAmdgaxdicpwhgerﬂlhveeomtypamd
mbgnmumdpmthcfoﬂoﬁngnchimm
possible:

1. Make the types wad subprograms visible to the generic
templates via with clauces. .

2 Ml.k:achgcndic'puchgctmxnymkmdd@ﬁmm&x
gwic[omdpcmeminthcgmdcpmdach.

3. Nest the generic definificas within the specification of
another generic package, C The generic prt of C
mxﬁnsmmmmfmdptmm(ﬁgm&

The second option is & large improvement aver the {irst. Future
wofpwhtguAmdBnuymwwpplyMownzypumd
subprogreats foc the generic formal parameters. However, this
architecture becomes tedious and error prone when the common
types and subprograms are long and complex. Since gencric
instentiation becomes a large pert of the effoct when maximizing
verbstim pease, it is desirable 1o simplify this activity.

mdﬁdcpdoamﬁshadwumegodscﬂwsemdopﬁou
bt wich less duplication. This optien is useful whea the rumber
ofneazdgmia«thcnmnbaofoomnmgemﬁcformd
perumcters becomes large. It is Jess error prone because the
common actus]l parameters are supplicd only once. The
muintenance phase also benefits from the single location of
commeon sctusl peremeters. .

Figure 7 shows an example of nested generic definitions from
UARSTELS. The generic function FSS Digitize is declared
vrid:ind:egcna‘icpwhgc(}cnaicScnsarDigitinﬁon. The
mmmdummcwm
digitization), a5 well as the generic formal paremetess of FSS
Digitize, sre referenced in the body of PSS Digitize.

generic
type REAL s digits <>
type COUNTS s raoge <1
with procedure Log_Erroc .-
(Message : fa String) & Text JOPut_Ling;
package Generic_Seasor_Digitization Is

function Linesr Digit
( Parameter: in REALL
Dias 2ia REAL; .
Salc:llgREAL)mm:

generie .

type COUNTER Is range <>}

with function tan (X: REAL) return REAL s <

with function sin (X: REAL) return REAL k<

witk fonctioa cos (OC: REAL) return REAL ks <

with function Floor (X: REAL) return REAL & <3 .

( Angle:tn REAL;
Coefficient : in REAL;
Tolerance s tn REAL;
Maximum_Namber_of_Jterstions : in COUNTER )

return COUNTS;

¢ad Generic_Scusor_Digicization:

Figure 6

Ndnu;hdw&uogdoamh.kuﬁeu&wuhi;hdepuof
coupling. Futire instances of cither A or B will always be using
the same common types and subprograms.  This inflexibalicy
results in limiting the verbatim reusability.

Figure 7.

Emﬂy.lp-wdalbmcﬁtwmmﬁwmtbcn&dgmic
defmirion epproach. Maost compilers, a5 previously patited out, do
mmmmwmmugmm
o insuntistion tme. The advantage for the designer neading only
lgmaic&om:packngcmhhgldmed;cnaicdcfuﬁdom
kmuonlytbzobjoaeodctotthelhlmdzdonvinbc
generand
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3. REUSE IN THE LARGE:
PROJECT-SCALE REUSE

mmmmmam:wmmhmomu
have had the most impact on verbatim reusc: UARSTELS &d
GENSDM. Rrwmmjc&.mmkmmmu
bakguundhformxdon.thcgods.mdmemodvuingfma
involved during development. Esch system's erchitecture is
discuaednsingdxeooncepumdnoﬂ:ioaﬁomthepmﬁcus
section of this paper. anlly.thcldscnshcmd&nmach
pmjcc:mdhaxssedwixhtha’rimpﬁcdianfotﬁmd:«bpmﬂ
efforts.

UARSTELS Ovetview

The UARSTELS project wes started in Februsry 1988 end was the
fourth Ada simulator initated st FDD. Previous simulators
included the GRODY expetiment, the Geostationsry Opcrational
Eavironmental Satellite-I (GOES-I) dynsmics simulator
(GOADA), and the GOES{ telemery stmnlator (GOESIM). The
GOES-! simulators represent the operational Ada sofowsere
developed 22 FDD. .- .

mmwmwwwmmmd
padmgamﬂydaawodxmbmty[Qﬁnby.m&

Oneofthchmlamedﬁmdximplmmnimphmohhc
GOADA snd GOESIM prujects was that using Ada was not
dgniﬁctmdydeausinzﬁckvddcﬂ'mhwm
This was unexpected. It was predicted that the integration test

test phases. Some Ads have clsimed that gystem
non-Ada projects (Hudson, 19881

mmwmummmwuwm.
nsdn;GRODY‘xpnchge&mobjﬁ:ndtypabmnidok
«t ¢ high level in the GOADA design. This incressed the mamber
of components to integrate ¢ each level.

UARSTELS Architecture

The xchitoctre of UARSTELS was influenced from e start with

dnbnvdedgcdmmdu.my:&uﬂu:imulummldfoﬂow: .

the Extreme Ultraviolet Explorer (EUVE) telemetry simuletor
(EUVETELS). A high level of reuse from UARSTELS w

4-15
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EUVETELS was both desired and thought o be possible because
of reused functional specifications. However, bectuse the two
spacecraft were themselves different, the telemetry simulators
would be different. The design for UARSTELS nceded to tke into
sccount thesé §p dependencies and parametcrize them.

Eﬂdcigndcdﬁmm:deoaUARSTEI.Swmcdwaﬁsfyuu
following requirementss

1. All UARSTELS requirements

2. Some known requirements from previous sysiers

3. Some possible futare mission requirements

The goals of the UARSTELS team wae.lo maximize verbatim
mewd:ﬂwthcmpﬂ«mchxksysmhucgnﬁonumuch
as possible. To achicve this, the design team ook 2 hybrid

to the system’s architecture. Most packiges were
daelopedulﬂ:ntypdqu.nﬂxcrd:mncstedwﬁls;hcwa,

instanristions of these gencric packag
higher level packages. The level of nesting (ot lryering) within
UARSTEI-Siseanxpszkmd:nofGRODY.withdximpmw
diﬁdmbeingtbcmofgmicmiuhum. The
ge:ucdcptchgumybcpickcdupmdzcusedjuautbe
mngcnaicp-dugesbGOADAorGOESM.wixhdumpom
difference 1guin being the use of generics.  The mnested
hmmdtﬁomlﬂwmelmmcmpa{ominumdcndnds
(whether the mmdnpafamcdorm()uach

;xognmmcr
compilation just as in GRODY.

insuntistion

ddadedshmhmdmmddﬁdﬁnum In
mm&mmw&mbm&mdmgm
packages sre library unite, As sach, they mry be picked up end
rensed | of cack other. In the case of a seasor model,
bawerer, exch of these objects is nocessary. To provide all tree
ctd:a::qucd.oubachmmdeLdzym' i

vidﬁndx'spedﬁmﬂcno(dngq:aicwchgem_m
Mtpp&adm;pdﬁcmmwﬁedmmmbm
kvdgcaaiavhmthcymhmmﬁucd. The sensor-specific
PATHMELTS &S generic formal pargmeters W Seasor_Cutput,
Sm_Omhmmﬁnmdvihhmebodyof&egmdic
ms«moddpadnge.wihmem-qxdﬁcgumbch:
provided at that time. The spacecrufispecilic parametes &e
gmﬁfmdpmofu;mkmmddpdqe.
minsmdtﬁouofdngeaaicmunddgadugemdvaun
dzfamdww&mxhiuhdnﬁwjajmobjw.

MamkdﬁkudﬁmUARﬂﬂSMm&wmm

‘mhkzwmpﬂdonﬁmemdumsblesiu. The

ha’uscdnseo{gaﬁicmichndt&w:ﬁcaonueom;ﬂm
averhesd, nukuhuga.hCPUﬁmemddagscddme.lo
mompﬂeUARSI'ELSMmyetduodw:&nnlm. In
sddition, while UARSTELS is £l ificeraty smaller in source lines
o(cod-emdinmbcrofccmponcnu.iiubodgniﬁawyh:a
in executsble image size. This is because the Ada compiler wied in
FDD docs not support code sharing. Tnstead, X expands generic
units foc esch instentistion.



UARSTELS Lessons Leamed
The lessans lesmed may be summarized a5 follows:
«  Nesting reduces integration testing
« Library tnits provide reusable softwere components

. Gmclﬂxuym;mndembkcompmnmd
allow i :on hiding via i -

« Mamy Ada implementadons incur & large compilstion
ﬁmcwcdndfa&cmdnmdmd;wuﬁn

. MmyMtcompﬂcspmﬁdcxdmplcimphmmdauof

The nesting fearure of Ada must be explaited. The virme of

blpdmmmmcmmumku(u.mgmmd
dem«mmdkﬂomm).bmmisvinmm
sutomatically either. Mghthcmofmmdyqpedobjccu.
mmmmwuwmmu
further stomatad,

qupingwtgamd.hmm(mumof_
nesting. Opaaﬁonsoaprivmqpambede(wviddnme
seme scope (package) that defines the type. Since the internal
smmo(m:typeisaotvin‘bleomxidedkaope.nu
opaubasmbedcfnwdvidﬁnuumpeoruop«ubnsau
be irmpored with & genaric instntistion,

Circumventing nesting, strong typing, and generics in order o
minimize jepmpihtion time is a short-term fix with the long-term
rumification of decreascd reliability and reussbility. U the
compilation overhead is unaccepable, then altemative Ada
development enviroaments wAll be required.

GENSIM Ovecrview

The GENSIM project was started in 1986 by a group sudying
ways 10 increase the reuse of simulgior softwere znd the possibility
of integrating the dynemics and telemetry simulstion capabilities.
Thas poq:oons'npdofbomsoﬁwmdﬂcbpas and mathematical
aulysts, all of whom had simulator project experience. Al the
sxme time, reuse sfudies in the Softwere Enginecring Laboratory
(SEL) (Sclomon. 1987] showed that reusing code without
modification (verbatim reuse) yiclds & wemendous reduction in
development cost. One of the earty products of the GENSIM effort
mtsaxdydn&atixmmddmmofm&waedcvdomtforl
dynsmics simulator could be cut in half by creating verbatim
reusable components.

The GENSIM team believed that the best approach 10 mazimizing
verbatim reuse was to reuse products from all phases of the
software enginecring life cycle. This belief was bated on developer
apamnmammmyfamdwﬁwmeughmﬁngmm.
mshnulmpoblanwsdividcdhm'mduh&'admfwhidl
models an entity in the probler domain The products associated
vzm«dmodukmdudc:spoaﬁamdmgndocmnamou.
mwumedfowmju-wﬁemm A module
q;edﬁadonconsistsof(compldcdcﬁnkhnohbcinpus od
outputs needed, the algerithms 0 be implemented © model the

the pesting of perametens
dsehdividndmodnlesnbcmﬁ;wcdbmnmsdnddmnm
srchitaccxe,

Toddminexh:fcm‘bmxyo{ngmicdm!w.npwypek
being deveioped and spplied 0 a simplified mission. Afux the
prowlype demonstrates t'he. ability W configure ¢ dynamice

sumulator for different missions, & full set of components and
modules will be developed. s

GENSIM Architecture

mm«mmmmwm
uﬁmmwmwr«mm
standerd mmmwmw
&ommeinithlGENSNdsignlhuanbe:ppﬁdmdze&nd
version of the system.

szu=9shovslhcsundnddymnﬁcsdmhmtuchhme.m
reuubl:moduldmpamofdxespwoatft.lwdmmd
enviroament models (SHEM) subsystem.
modules inctude Sun sensor modeling and goomagnetic field
modelmng. mq:wdtmolmbsymhdwysukdou
@adubmeadmmb:bmhmhhu&duuuﬁmdc
caatrel elgocithms for & specific sasellite. The only reassble parts
h&mmsmmmwmﬂa
md(modukdmmmmmdmdm The
usu’in:afnchud\eobviasupcbﬂidaofm«ﬁngudcﬂw
results.  The case interface subsystem is responsible for
mainaining simulation cases, including analysis results data,
smulegion input parameters, and suspended simulation ¢scs- The



case inwerface also standardizes communications between the SHEM
modules_and the user interfsce. The simulation executive
subsystem has two Major purposes: 10 manage requests Lo coatrol
mcdmuhmrmd(ocomhhc;eqw\cingmdﬁnﬁngo[mdnlc
execution. The last subsystem is & utilities subsystem, which
conﬁmofuvad;micmiumdlsdohmdud.inmducd
instantistions, as is described in Section 2. For example, the
insmdxﬁonofagena‘icli:ud;ebupdxgcreq@auqum
roo(fmcdon.vdxichkpmvidedbythcimundlﬁonohgmd
. mathematical functions package.

'Hmlﬁmwmwmnﬁmhaqﬁdsmlm@k
(Module K). The package Module K performs the sctual
modeling. It cin be initialized and frvoked from the simulation
executive, and communicates with other SHEM modules through
procedure snd function calls, The generic module database and
gmmmmm;wwmw
the stendard communications between & module end the other
mmmmhmmﬁ:mdvi&typumdvm
from the Module_K_Types package. These instantistions sre called
oabytbeModxde_Kpchgevhm:bemoddMi:bdn;
inidalized or activated, and they src called on by case interface
mmmwwamhdnkm&dbym
other subsystem. Using this standard approach allows & different
set of SHEM modules to be used for each mission.

CLAD

Fgure 10

The GENSIM design just described is & conscrvative extension of
existing simulator designs. In general, the dynemics simulation
cxpability remuins the same, but the design has been rewarked ©
be more cbject oriented. For exmmple, the case interface

wis addad to treat the concepe of simulation case 15 &1
object, rather tham to distribute those capabilities betwoen the user
interface, the SHEM, snd the utiliies. The utilities sabsystem
was elso chunged from one gigantic generic psckage ® sevenl
smaller, independent generic units, The main effort in GENSIM
has been directed woward generalizing the design 1o make the

The user interface, case interface, and the simulation executive
subsysiems must be implemented s generic subsystems that can
be paremeterized by the selection of modules for & given missica.
The case interface subsystemt can be used to demonstruce how &
genetic subsystem is designed. The discustion of individual
modules in the provious shows how the gencric module
databese and module results packages erc used by modules, The
case erface subsystem must socess these same insunces ©
commmicate with the user and 0 maeintain simulation cases.

Figure 11 shows the design for the gencric case interface
subsystent. The case manager object is responsible for mmaging
simulation cases a5 ¢ unit; end the ground command inter{ace,
parumeter interface, and results interface objects manage
eompo@x(nx:humdysismhs)ofusimhﬁonm The
wrmhmfwemdtbemdum{mm:xmeme
communications with SHEM modules. Figure 11 shows that ol
wpm;amhmehwd:howva.d\cymusedmun
tme. Foc exemple, & procodure that edits ground commands would
wse the ground command interface but not the other objocts.



Figure 11,

If these objects were not being implemented as gencrics, exch
object in this subsystem would be implemented &g & Ebcary
package, which could be imporied mdependently, Widh & generic
subsystem, esch of these packages must be perzmetetized, snd
mzny of the generic formal parameters sre commaon © more than
one package. If each object were implemented 45 & seperute generic
package, there would be multiple definitions of the seme formal
parzmetess with 2]l the maintensnce problems such & redundant
swucnre entails, Since the packages in this subsystem are coupled
myway, the case interface subsystem is mplemented using the
nested generic definitions technique (described in Section 2 of this
paper), which allows the commeon parameters o be placed in the
generic part of the composite package.

In the GENSTM design, even the parameters that apply wo oaly one
package were placed in the coamposite package. When dhis is done,
the nested packages sre no Jonger generic. This approsch poduces
any possible confusion between generic packsges and their
trstances by allowing the user v instantiste the entire sobsystem,
Then the nested packages can be used without having © instantiste
mare generics. The cost is that the nested packages are now moce
highly couplod. In the casc interface, this incressed coupling &
Justified because oIl the coupled paciages are part of the sbsraction
“strmulation cese.” The utilities subsystem coasists of independent
genenc packages, where the coupling is ingoduced between
instances of these generics. This approach allows the generic
packages w0 be used outside the context of dynamics stmulatocs.
There is no corresponding need 1o use individual components of
case interface outside the context of dynamics simulators because

d\ccoupungbawomdwcomponcnlskdcf'uwdbymcmxcor-

simulation case! The degree of coupling allowed in the design and
implementation of reussble components it one of the key

judgmcnudcvdopcnwmh:.

The major benefits dexived from the GENSIM project are in the
categoties of (1) gaining expedence in the use of advanced Adx
fearrres, (2) geaing idees for improvements in simulator design,
ad (3) poducing the reusable components themselves, This
sohsaction will focus on the 3¢ two cxizgarics. In the first ares,
the redefinition of the utilitics subcysiem a5 4 set of Independers
generic packages tied together as a set of intarrelated instantistions
demanstratad the ehillity 10 write generic psckages as Yescribed in
Section 2,

When designing & subsystem this way, the developer must make
sure that all the generic formal parzmeters designed sre manched by
scmal peameters provided by some other package. It is also esses
Wiuwummmmmumu
fower level instantistions needed o instantiste the senior-level
generics are tested and, in turm, can be relicd on W sapport the
testing of other objects, If care is teken o design & sct of generic
packages with consistent naming coaventions, defaults cen be
provided by standerd instantistions, allowing the repid writing of
instantistions for testing paposes. When all these conditicas are
met, the techniques described in Section 2 work very well, The
decoupled genericsicoupled instantistions tochnique is the best
spproach 0 develop packages that provide the ability to use
problem domuain shstractions rather than predefined Ads conszucts,

Gmsmmwmmdhdnmdmmbym
mwaqpammmmuhmsudbybcgmmgu
focus on te decision criteria for their use. The criteria for using
priveie types is that they should add the protection of data integrity.
For example, the attitude types package defines the private type
COSINE_MATRIX. This type is identical in data definition to
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any other 3-by-3 matrix but has a sct of operations that guarantee
that s COSINE_MATRIX always represents & rotation. In the case
of GENSIM’s orbit data typet, & privaie type docs not sdd eny such
data protection; the effect is 1o foree a uger (0 use operations
Fwidcdfoﬂbedautypcinpwdsdytbemw-yumwuld
use an assignment statement. When this is the case, the type
should be made visible in & package specification.

Possible Improvemants to GENSIM

The GENSIM pmqpinghsbemmsfulhgmanﬁﬁng
dynmﬁudmuhudedmhumfamhbaimdﬁumm
simmalators can be improved on. Currendy, simulator module state
dmzypanrebuihfmmhdivichdsalnobjeﬁsotmyxofxd«
objects. A more object-oriented design would define abstract data
typa(ADTs)forlhc]roblandmnlinmﬁdesuldedlde
ADTs 10 define module states. This is particularty true when there
ucmulﬁylcobjeasof:type.uisthecuewithspueatﬁ
sensors. As an example, the current design of & fine Sun sensox
model defines the simplified module state 25 follows:

body Fine_Sun_Sensox is
« N is the number of Fine Sun Seasors used {or & mission
type STATE is recond
: Double_Linesr_Algebra. VECTOR(L.N);
Bet_Angles
1 Double_Linesr_Algebra. VYECTOR(L.N);
:D?ul?lz_l,mmAlgebltVECTOR(Lﬂ); 7

Beta Lirmit
: Double_Linetr_Algebra VECTOR(L.N)
e record; .

Module_State : STATE;
J Fne_Sun_Sensor_Module;

A better implementation is ss follows:

Alpha_Limit mixes the problem domaein concept of & limited
sensor ficld of view with the fact that N sensors are used for o
perticuler mission. The second implementation makes it clear that
N refers © (he.number of sensors and that  the abstract data type
encapsulites esch seasor’s angles and Limits,

When the problem domain object (ot class) is implemented with 2
distinct Ada libeary unit, it is possible W use the object-criented
pogmxhgmofhm«kmmatdcchiaudxyofchsus
and subclasses, Figure 13 shows how this ‘could work when all
the detsils of a finc Sun sensor model are comsidered. This
tnheritance tree, which is implemented using nested insandations,
shows four levels of increasing complexity, starting with the
WBSMMW(M&WMMM
Each of these four generics can be instentiated cither as o library
it or nested within & module, Each subclass in the chain tailors
its superclass by incorporating the models provided by the
tespective utlity packages. Inherited operations can also be
specidizcdmdncwopaxdonscmbeddedmlpachge(sm
1987]. For example, a fine Sun sensor enginecring model needs
to decalibrate simulated data so that calibration glgocithms can be
tested. Since this decalibration is specific to fine Sun sensors, the

i0n would be sdded to the gencxic FSS eugineering model
pacbggwidxdxmisc.biascs.mdmisxﬁgmmbdmpmﬁdcd
by the generic messurement wrilides.

with Fine_Sun_Sensot ADT;
packrge body Fne_San_Seasar, - Modale is
type STATE is arey of (1.N)
of Fine_Sun_Sensor_ADT.FINE_SUN_SENSOR;
Module_State : STATE;

en.d" Fine_Sun_Sensar_Module;

In the second implementation, Fine_Sun_Sensor_ADT
JFINE_SUN_SENSOR is an shstract dats type that encapsulates
ol the necessary saributes for a single scasor and provides boch

operstions. Oune sdventage of using
abstract data types is the tighter encepsulation of data. If a chenge
is made 10 the fine Sun sensor modeling, the scope of the change
is then restricied 10 the body of the sbstract data type pscige radver
then affecting the entire module.

Another sdventage of using abstract data types in this context is
damidsep«:ﬁouo(lhcpmblandamnhobjoaiudfmdism
within ¢ soltware system. In the first exampie, the declaration of

Fgure 13.

Thi:wuchuscstbcmedgcnﬂ'kinmﬁm&uhem
way & UARSTELS. The difference is that all sensoc-specific
wrilitics, such as fine Sun sensor decalibration, are part of the
sensoc absTact stale machine, not part of the udlicy packeges.



The use of inheritence allows the selection of an appropriste model
for a wider variety of applications. A telemety simulator would
typically pick the tclemetry model, & dynamics simulator would
pick the hardware model, end emror analysis softwere would use the
engineering model, The use of inheritance reduces the

between the different spplications, which saves effort in boch

development and msintenance.

moduuuhwhich&cihuhmmbemadcmgmﬂis
the module types packages. These packages are not defined as
generic units, but they conwin & mix of mission-specific
parameters (such as default initial conditions) and missica
independent parameters. The nesting of a generic package within
the types package is one possible way to muake the system essier to
configure. The nested generic would be perameterized by the
misdondepaﬁati&wimwmofmetypapmgemhg
mission independent. A library instantiation of the nested generic
would then be created o define the module’s use for & particular
missicnnxhathmloen:u.xivdymodi{ylhcwpap:dxges.
Figure 14 shows how this would work for & fine Sun seasor
module. The cost of this is that the other packages in 1 module
naw need o impor both the types package and the instance of the
nested generic, wheress only the types package was needed before.
The strict separation of the prrameterized part from the consistent

CAMP and of using a single {loating-point type as the basis of all
calculations. To do this, crileria must be defined for the proper use
of Ada's typitg festures, Whea (0 use of not 0 use types,
subcypes, derived types, or privaie types needs clear definition,

This peper’s discussion of inheritance focuses on nested generic
instantistions as 4 means of implementing the concept.,  An
altemate spprosch is 10 use derived types W simulate inheritance
[Perez, 1988]. In the simulators discussed esrlier, generics are used
for both perameterization end fot inheriunce. To use derived types
for inheritance would require the investigation of the interzetion
between perameterization ed inheritance when different language
fesnires are used,

General Concepts foc Large-Scale Verbatim Reuse

Thcl«sorukxmedbyd\eUARSTELSmdd\eGENSIMpmjm
hxve led us ©0 & general reuse model. This model defines different
levels of reuse and which reuse-in-the-small techriques should be
applied at which level. Figure 15 shows the leveled reuse model
on the left and typical exsmples on the right. As in most ayered
models, the higher layers depend on services provided by the lower
Lryers.

pastis worth the added complexity. LEVELS EXAMPLE
* System Templates | Generic_Case
ARCHITECTURE Fruerface
LEVELS .-
* Component Double_Precision
Templates FSS Module
« Domuin Objects FSS_ADT
PROGBLEM and Classes
DOMAIN )
LEVELS~ * Langusge Extending | Linesr Algebra
Objects and Classes
. Fgure IS.
FSS.
Fas - R B The lowest leyer of the model is the language extension layer, This
; Generic FSS Defadlts il layer's parpose is (0 crestc 1 problem-specific langusge by adding
| N — s reusable Ads to the existing cepabilitics of the Ads

AT AR R 4 e e

Fgure 14,

4. FUTURE DIRECTIONS

The experiences of the UARSTELS and GENSIM projects have
demonstruted that the Ads Lnguage, snd particulerly generics, can
be used to produce verbatim reustble components that can be fit
into mare than ooz architactire, Some odier Ada langusge fesnsres
neednbeunnincdmd«dyunehovmduldzymta
simulation sofrwere, There has been & trend o using more strong
typing &s moce experience is geined, but the FDD's Ads sofiwere
humcgoucufuudxeCommonMaMi:tﬂcPtduga
(CAMP) packeges in using distinct types. The CAMP packeges
e & scperate type for each unit of measure, both in generic
paameter lists end  in nongeneric code [Herr, 1988]. The
dvmgco{whg&kdcauo{mrypingisudzcm:pﬁa
iscblcloa:dzmydimauioudlyhooﬂeamﬁon. The
dissdventage is that overlosded operators need o be defined
my*hcreﬁmmormdiﬁmtypsaubemndyuedhl
computation. A balance neods W0 be found between the extromes of

- lngusge. In the flight dynemics domuain, this meens defining

types and opcrations for madiemnatical constructs such ss vectors,
matrices, ad orbits, Applications code can then be developed
using the specialized cepabilities rather dun predefined Ada
constructs. This level can be considered the state of the practice for
software rease. The Booch components and the EVB GRACE
components are af, this level.

The lenguage extension layer itself uses « layered spproach. The
domain-epecific objects are umally built on op of more general
objects. The ocbit data described sbove is specific to flight
dynamics, bt it is representad #s two vectors representing position
ed velocity, When cerried into design, e orbit data types package
woald depend on & more gencral linear algebra package that exports
vecuor types.

The other imporunt distinction at this level is between entity
shstractions end action sbetractions. An object with action
sbstraction is completely described by what it docs. A sort
package provides operstions 0 sort datx; ¢ random mumber
geoeralor gencrawes random aumbers.  An object with entity
abstraction hes attributes beyond its set of computations. For
example, 4 queuce can be described as & set of homogencous dita
that is sccessed end modified using a FIFO protocol.
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Figure 16 shows how the level of abstraction and level of
generality can be used to characterize language extension
components. Some typical simulator components are characierized
by these two charscteristics. The scale from domain specific
general is more continuous than is shown oa this disgram. For
exsmple, & linesr algebra package is specific to the mathematical
domain, but it it considered 1 general-purpose package in the flight
dynamics domain. Thus, it would fall somewhere in the middle of
the scale. The distinction between entity and action sbstraction is
more cleer cut. If the object has relevant propertics beyond the
actions it performs, it has entity sbstraction.  These propertics are
soen in Ads code s state information that can be retrieved and

modified by & package’s operations,
ENTITY ACTION

ABSTRACTIONS | ABSTRACTIONS
Quaternion Telemetry Encoding

DOMAIN Oxbit Hardwere Failure

* Models
Stacks, Queues, Sorts, lntegruiors,
GENERAL Veciors, Matrices Random Number
Figure 16,

The next level of the model is the domain leve! . This is the level
ot which the mujor problem domain entities reside. State-of-the-art
reuse libraries such as the CAMP confain componeats that are
reused a¢ this level (Hem, 1988]. Both the domain level and
lenguage extension level consist of objects end classes. The
. difference is that the objects at the domain level define the problemt
domain, #nd the objects at the language extension level arc &
mezns of expressing the model for & given problem domain object.
The fine Sun seasor abstract data types described in the previous
section sre all problem domain entities. They sre described in
texms of vector snd manix algebxa, #nd in terms 6f standard eror
sources, telemenry encoding, and sensor failure models, The
generic packages for fine Sun sensor data types implement the
domuain entities ksing capabilities provided at the language

extension bevel

Figure 13 shows how & mix of domain entities and generic
language extensions cam be used to build & hierarchy of classes and
telametry urilities sre all language extensions, bat they are used in

The next level of reuse is the componrent template level, the level
at which generic components are bailt to fit into a given system
srchitecame. The GENSIM SHEM modules and the UARSTELS
sensor models are examples of component templates. Compoaents
can be built directly from problem domaein objects, oc they cm
pravide indirect support. In GENSIM, the SHEM modules will be
built sround shstract data types, such as those pravided for the fine
St sensors, £nd the standard module datsbese and module results
packzges that ere instantiated %0 suppart the module, In additon 0
these packages, & standard screen forma file is used by the user
tnterface to allow user inputs for esch SHEM module. The key
distinetion is tut the component lemplate level defines 4l the
components needed o fit & problem domain object imto 4 given
system architecture, where the domain level consists of a set of
abjects that are not constrained by s perticuler system design, but
only by the problem being solved.

The component template level objects are 2lso parameterized, but
the emphuasis shifts somewhat. The fme Sun sensor sbsuract data
types tre perameterized by data types for vectors end matrices and
by operations needed to interface with other problem domain
objects. The fine Sun sensor module is perameterized by items
such ss the number of sensory, the default input values, and
selections of which inputs ¢ user is allowed to modify. Some
values of problem domain parsmeters may be constrined at this
level. Figure 15 gives the example of Double_Precision_FSS_
Module. This module has been coastrained 0 use 1 particular
flosting-point data type, but it is stll psrameterized by the
mumber of sensors and default values ’

The wp kevel is the system template level A ‘generic system is ¢
teusable design into which individual components can be fit.
Objects at this level are parameterized by the set of components
being used in & paricular configuration and by any other values
that heve & system-wide effect. In GENSIM, the parameterization
of the generic case mterface is related to the particuler st of SHEM
modules being used. The simulation executive is parameterized
both by the set of components being used and by the spacecraf(’s
control modes, which sffect how often these components need to be
xecuzed,

The two template levels provide the capability of quickly building
1 software fystem. Like the language extension and domain levels,
the capabilitics pravided by the lower level are used by the higher
cme. The key distnction is that the lower two levels give &
complete definition of the problem doruin, md the upper two
Jevels give & complete definition of & generalized software system
srchitecmre, It is importmt that the problem domain objects be
completely independent of particuler system erchitecoares. To
achieve this, the kower two levels from Figure 1S are grouped as
problem domain levels sd the upper two tre grouped &5
architecture levels.

The discussion in this section hes focused on design issues, not
how Ads should be used 1o realize these designs, The principles
that spply o rease in the small cm be extended o reuse in the
lerge. A developer must still be concemed about a mix of gencric
packages and their instantistions, end the coupling berween
companents remuins & key issoe.

In the problem domain level, the ouly coupling between objects
should be defined by the problem. The prefered means of linking
objects wgether is 1 restrict dependencies © those betwocn Bbrary
stentistions. One previously mentioned excepdon o this is te
simulation of inheritance. Other reladonships can slso be
simulated through nested generic instantistions or nested genctic
daclarations. An example where nested instamtistions are useful is
in the case where oae object is built from simplar components, &s
o inertial reference it (TRU) is built from gyroscopes. The RU
mtm@&ﬂmhu{am:mdw
they ere stroagly related, The nested generic doclarations sre useful
when altemate models depend on the same objects or types. For
cxample, & orbit types package is ired in terms of
simple madiematical functions, but they sre used by 8 veriety of
differens models for propagating orbits over ime. Rather than
mxin;insuminﬁou:o(t!norbixrypawidﬁnmaﬂdiﬂam
models, the designer can present the models s a st of options
that depend on the same arbit types.

Lmporting other library units inw gencric units is not ¢ problem
when usad for companent templates or system templatcs. Figure
17 shows where the generic case interface package imports the
tnstantistion of & generic types package. This inter{ace types



package provides standard data types for communication between
the user, the stored simulation dats, end the SHEM modules. The
designer should try o minimize this sort of coupling. In
GENSIM, only interface types and & common types package are
tmported into generics in this manner,

5. MEASURING THE EFFECT OF LARGE-SCALE
VERBATIM SOFTWARE REUSE

This section discusses the impact of the vexbatim reuse ca project
management by describing bow casts sre affected and the effects of
the layered model A recent SEL study {Solomon, 1987]
chracterized software components &3 being new, rebuilt (greater
thun 25-percent modificstion), adepted (up 10 25-percent modified),
and verbatim (unmodified). a5 x perocntage of the cost of
& new companent, the costs of the different types of reused
COmpOonems &TC spproximately 3

Yerbasim 10% (actually 72 %)
Adeped 0%
Rebailt 0%

To make conservative estimates, the 10-peroent figure is used for
verbatim companents, and sny noaverbetim comtponent is essumed
0 be new.

The GENSIM cost study [Mendelsobn, 1988] shows that the
currentt levels of reuse for dynamics simulstors save 15 0 20
percent over all-new systems. The saudy also determined that
dynmics simulacors have & poccatial for sboat 70- w0 80-pereent
verbatim reuse; oaly the specocruft contol system code is
developed rom scratch for each mission. These verbatim reuse

levels translae o & cost savings of from &0 o 70 percent over an
all-ncw system ar at least 50 percent from current systems,

The key W schieving high levels of verbatim reuse is4o reuse
specifications and design. The analysts ‘who define the
requirements foc FDD systems developed common mathematical
:pedﬁad«ufcrdltysmwpporﬁngEUVEmdUARS. The
current estimate for EUVETELS reuse from UARSTELS is 87
pcc:ngwhichmhwsmcppmximudyzo-pamcoauvhgs
aver & new system. Even the FORTRAN software supporting
EUVE has a reuse level of from 60 w 70 percent from UARS,
wheress typical levels [all into the 20- w0 30-percent range. The
incresase from reusing the mathemadesl specifications is much
greater than the incresse observed as the result of using Ada as the
implementation language for simulators (Brechbiel, 1989]. These
data confimm the correctness of GENSIM's use of a set of stndard

In sddition 1o measuring the level of verbatim reuse, the effoct of
verbatim rease can be divided into the reuse of problem domain
components end the reuse of components az the srchitcture levels.
No FDD sirmulators have been developed using the proposed rease
model, so the estimate will be based on the fact that the user
interface for the dynamics simulators typically contains 40 percent
of the source lines of code end no problem domain objects. Since
the capabilities of the GENSIM simulation executive 1nd case
iterface subsystems sre currendy distributed among other
subsystems, 40 percent is & conservative estimate, It is probably
cotrect 10 assert that the benefits of reusable srchitectures equal or
exceed those of developing reusable problem domain components.
1t is clear that these benefits sre roughly equal.

6. MANAGEMENT RECOMMENDATIONS

The primary mnzgement recommendation is w0 build the problem
domusin levels irst and © build them botom up. The lnguage
extension layer is & mesns of expression for domein objects and
classes, The domain objects and classes serve as the building
blocks for reusable system architecnres.  Another sdvanuage of
building the problem domzin leyers first is the ability w0 bulld
multiple architectures from the same set of problem domuin
objects. For simulation epplications, this means that the same
set of problem domain objects coald be vsed 0 braild 2 dynamics
simulator, & telemetry stmulator, of & combined dynamics and

The strict separation of problem layers from architectire layers also
provides the means of keeping up with technology. The same
domain objects would be usable on either e 8086 based computer
with 2 manocirome text screen of oa an 80386-based computer
with high-tesolution graphics. The architectre of the system
would be changed, slthough it would probably not be rebuik from
scrach. The erchitecture of & system should be driven by
ectmology, md the solution of flight dynxmics problems should
not be. mmetmmmmmwigumkqa
easier © mensge chnological change.

7. CONCLUSIONS

The current stase of the ert in so(tware reuse is 10 provide problem
domain componcnts and problem domain objects. This paper has
demonstrated that designing verbatim reusable components at the
erchitecture fevel cam creste spproximatcly the same savings as the
current state of the arL The new approsch that needs W be spplicd
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1 future systems is wo strictly scparaic the problam domun objects
{rom the particular system architectures and W build the problem
domain layers from the botom-up. When this spproach is used w
develop verbaim reusable software, the resources saved can be
spplied o new problems (extending the problem domain) or 0
provide better solutions o existing problems by upgrading the
srchitecaure.
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